Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 31(4): 511-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365969

RESUMO

The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.


Assuntos
Isquemia Encefálica , Glutamina , Histona-Lisina N-Metiltransferase , Sirtuínas , Sirtuínas/metabolismo , Sirtuínas/genética , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Glutamina/metabolismo , Camundongos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Humanos , Regiões Promotoras Genéticas/genética , Neurônios/metabolismo
2.
Cell Mol Life Sci ; 81(1): 62, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280036

RESUMO

Endothelial injury and dysfunction in the artery wall fuel the process of atherosclerosis. As a key epigenetic regulator, Ash2l (Absent, small, or homeotic-Like 2) is involved in regulating vascular injury and its complications. However, the role of Ash2l in atherosclerosis has not yet been fully elucidated. Here, we found increased Ash2l expression in high-cholesterol diet-fed ApoE-/- mice and oxidized LDL (oxLDL) treated endothelial cells (ECs). Furthermore, Ash2l promoted the scavenger receptors transcription by catalyzing histone H3 lysine 4 (H3K4) trimethylation at the promoter region of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) and triggered the activation of the pro-inflammatory nuclear factor-kappa B (NF-κB) by enhancing interaction between CD36 and toll-like receptor 4 (TLR4). Meanwhile, enhanced expression of scavenger receptors drove more oxLDL uptake by ECs. In vivo studies revealed that ECs-specific Ash2l knockdown reduced atherosclerotic lesion formation and promoted fibrous cap stability in the aorta of ApoE-/- mice, which was partly associated with a reduced endothelial activation by suppressing scavenger receptors and the uptake of lipids by ECs. Collectively, our findings identify Ash2l as a novel regulator that mediates endothelial injury and atherosclerosis. Targeting Ash2l may provide valuable insights for developing novel therapeutic candidates for atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Camundongos , Animais , Células Endoteliais/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Aterosclerose/metabolismo , NF-kappa B/metabolismo , Receptores Depuradores/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
3.
Aging Dis ; 14(4): 1458-1471, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163422

RESUMO

The accumulation and deposition of beta-amyloid (Aß) are key neuropathological hallmarks of Alzheimer's disease (AD). PARP16, a Poly(ADP-ribose) polymerase, is a known tail-anchored endoplasmic reticulum (ER) transmembrane protein that transduces ER stress during pathological processes. Here, we found that PARP16 was significantly increased in the hippocampi and cortices of APPswe/PS1dE9 (APP/PS1) mice and hippocampal neuronal HT22 cells exposed to Aß, suggesting a positive correlation between the progression of AD pathology and the overexpression of PARP16. To define the effect of PARP16 on AD progression, adeno-associated virus mediated-PARP16 knockdown was used in APP/PS1 mice to investigate the role of PARP16 in spatial memory, amyloid burden, and neuroinflammation. Knockdown of PARP16 partly attenuated impaired spatial memory, as indicated by the Morris water maze test, and decreased amyloid deposition, neuronal apoptosis, and the production of inflammatory cytokines in the brains of APP/PS1 mice. In vitro experiments demonstrated that the knockdown of PARP16 expression rescued neuronal damage and ER stress triggered by Aß. Furthermore, we discovered that intracellular PARP16 acts as an RNA-binding protein that regulates the mRNA stability of amyloid precursor protein (APP) and protects targeted APP from degradation, thereby increasing APP levels and AD pathology. Our findings revealed an unanticipated role of PARP16 in the pathogenesis of AD, and at least in part, its association with increased APP mRNA stability.

4.
Cell Mol Life Sci ; 80(6): 161, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219631

RESUMO

BACKGROUND: Pressure overload-induced pathological cardiac hypertrophy is an independent predecessor of heart failure (HF), which remains the leading cause of worldwide mortality. However, current evidence on the molecular determinants of pathological cardiac hypertrophy is still inadequacy. This study aims to elucidate the role and mechanisms of Poly (ADP-ribose) polymerases 16 (PARP16) in the pathogenesis of pathological cardiac hypertrophy. METHODS: Gain and loss of function approaches were used to demonstrate the effects of genetic overexpression or deletion of PARP16 on cardiomyocyte hypertrophic growth in vitro. Ablation of PARP16 by transducing the myocardium with serotype 9 adeno-associated virus (AAV9)-encoding PARP16 shRNA were then subjected to transverse aortic construction (TAC) to investigate the effect of PARP16 on pathological cardiac hypertrophy in vivo. Co-immunoprecipitation (IP) and western blot assay were used to detect the mechanisms of PARP16 in regulating cardiac hypertrophic development. RESULTS: PARP16 deficiency rescued cardiac dysfunction and ameliorated TAC-induced cardiac hypertrophy and fibrosis in vivo, as well as phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro. Whereas overexpression of PARP16 exacerbated hypertrophic responses including the augmented cardiomyocyte surface area and upregulation of the fetal gene expressions. Mechanistically, PARP16 interacted with IRE1α and ADP-ribosylated IRE1α and then mediated the hypertrophic responses through activating the IRE1α-sXBP1-GATA4 pathway. CONCLUSIONS: Collectively, our results implicated that PARP16 is a contributor to pathological cardiac hypertrophy at least in part via activating the IRE1α-sXBP1-GATA4 pathway, and may be regarded as a new potential target for exploring effective therapeutic interventions of pathological cardiac hypertrophy and heart failure.


Assuntos
Insuficiência Cardíaca , Ribose , Humanos , Endorribonucleases , Proteínas Serina-Treonina Quinases , Cardiomegalia , Fator de Transcrição GATA4 , Poli(ADP-Ribose) Polimerases
5.
FASEB J ; 37(2): e22788, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692424

RESUMO

Ischemic stroke is known to cause the accumulation of misfolded proteins and loss of calcium homeostasis, leading to impairment of endoplasmic reticulum (ER) function and activating the unfolded protein response (UPR). PARP16 is an active (ADP-ribosyl)transferase known tail-anchored ER transmembrane protein with a cytosolic catalytic domain. Here, we find PARP16 is highly expressed in ischemic cerebral hemisphere and oxygen-glucose deprivation/reoxygenation (OGD/R)-treated immortalized hippocampal neuronal cell HT22. Using an adeno-associated virus-mediated PARP16 knockdown approach in mice, we find PARP16 knockdown decreases infarct demarcations and has a better neurological outcome after ischemic stroke. Our data indicate PARP16 knockdown decreases ER stress and neuronal death caused by OGD/R, whereas PARP16 overexpression promotes ER stress-mediated cell damage in primary cortical neurons. Furthermore, PARP16 functions mechanistically as ADP-ribosyltransferase to modulate the level of ADP-ribosylation of the corresponding PERK and IRE1α arm of the UPR, and such modifications mediate activation of PERK and IRE1α. Indeed, pharmacological stimulation of the UPR using Brefeldin A partly counteracts PARP16 knockdown-mediated neuronal protection upon OGD/R treatment. In conclusion, PARP16 plays a crucial role in post-ischemic UPR and PARP16 knockdown alleviates brain injury after ischemic stroke. This study demonstrates the potential of the PARP16-PERK/IRE1α axis as a target for neuronal survival in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Poli(ADP-Ribose) Polimerases , Traumatismo por Reperfusão , Animais , Camundongos , Apoptose , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , AVC Isquêmico/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Traumatismo por Reperfusão/metabolismo , Resposta a Proteínas não Dobradas
6.
Cell Biosci ; 12(1): 134, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986422

RESUMO

BACKGROUND: Cardiac fibrosis is characterized by excessive extracellular matrix deposition that contributes to compromised cardiac function and potentially heart failure. Disruptor of telomeric silencing 1-like (Dot1L) is the catalytic enzyme required for histone H3K79 methylation which has been demonstrated to play a role in transcriptional activation. However, the functions of Dot1L in the process of cardiac fibrosis still remain unknown. RESULTS: In the present study, we found that endogenous Dot1L is upregulated in cardiac fibroblasts (CFs) treated with angiotensin II (Ang II) or transforming growth factor (TGF)-ß1, along with elevated extracellular matrix (ECM) such as fibronectin, collagen I and III. Silencing or inhibiting Dot1L mitigated Ang II-induced myofibroblast generation and fibrogenesis. We identified the transcription factor-forkhead box O (FoxO) 3a as a novel substrate of Dot1L, the transcriptional activating mark H3K79me3 level on the promoter of FoxO3a was increase in activated-CFs, and inhibition of Dot1L markedly decreased FoxO3a transcription accompanied by a significant decrease in the expression of fibrogenic gene. Knockdown of FoxO3a could alleviate ECM deposition induced by Ang II, on the contrary, overexpression FoxO3a resulting in CFs activation. Consistently, in vivo Dot1L ablation rescued myocardial ischemia-induced cardiac fibrosis and improved cardiac function. CONCLUSIONS: Our findings conclude that upregulation of Dot1L results in activation of the cardiac fibroblasts to promote profibrotic gene, eventually causes cardiac fibrosis. Pharmacological targeting for Dot1L might represent a promising therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases.

7.
ACS Med Chem Lett ; 13(3): 436-442, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35295085

RESUMO

Ischemic stroke is a complex systemic disease characterized by high morbidity, disability, and mortality. The activation of the presynaptic adenosine A2A and A1 receptors modifies a variety of brain insults from excitotoxicity to stroke. Therefore, the discovery of dual A2A/A1 adenosine receptor (AR)-targeting therapeutic compounds could be a strategy for the treatment of ischemic stroke. Inspired by two clinical phase III drugs, ASP-5854 (dual A2A/A1 AR antagonist) and preladenant (selective A2A AR antagonist), and using the hybrid medicinal strategy, we characterized novel pyridone-substituted triazolopyrimidine scaffolds as dual A2A/A1 AR antagonists. Among them, compound 1a exerted excellent A2A/A1 AR binding affinity (K i = 5.58/24.2 nM), an antagonistic effect (IC50 = 5.72/25.9 nM), and good metabolic stability in human liver microsomes, rat liver microsomes, and dog liver microsomes. Importantly, compound 1a demonstrated a dose-effect relationship in the oxygen-glucose deprivation/reperfusion (OGD/R)-treated HT22 cell model. These findings support the development of dual A2A/A1 AR antagonists as a potential treatment for ischemic stroke.

8.
Clin Transl Med ; 12(3): e761, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35297562

RESUMO

BACKGROUND: The blood-brain barrier (BBB) plays a principal role in the healthy and diseased central nervous systems, and BBB disruption after ischaemic stroke is responsible for increased mortality. Smyd2, a member of the SMYD-methyltransferase family, plays a vital role in disease by methylation of diverse substrates; however, little is known about its role in the pathophysiology of the brain in response to ischaemia-reperfusion injury. METHODS: Using oxygen glucose deprivation and reoxygenation (OGD/R)-induced primary brain microvascular endothelial cells (BMECs) and Smyd2 knockdown mice subjected to middle cerebral artery occlusion, we evaluated the role of Smyd2 in BBB disruption. We performed loss-of-function and gain-of-function studies to investigate the biological function of Smyd2 in ischaemic stroke. RESULTS: We found that Smyd2 was a critical factor for regulating brain endothelial barrier integrity in ischaemia-reperfusion injury. Smyd2 is upregulated in peri-ischaemic brains, leading to BBB disruption via methylation-mediated Sphk/S1PR. Knockdown of Smyd2 in mice reduces BBB permeability and improves functional recovery. Using OGD/R-induced BMECs, we demonstrated that Sphk/S1PR methylation modification by Smyd2 affects ubiquitin-dependent degradation and protein stability, which may disrupt endothelial integrity. Moreover, overexpression of Smyd2 can damage endothelial integrity through Sphk/S1PR signalling. CONCLUSIONS: Overall, these results reveal a novel role for Smyd2 in BBB disruption in ischaemic stroke, suggesting that Smyd2 may represent a new therapeutic target for ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Histona Metiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Camundongos , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo
9.
J Am Heart Assoc ; 10(23): e022791, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34796721

RESUMO

Background Neuron apoptosis is a pivotal process for brain damage in cerebral ischemia. Dot1L (disruptor of telomeric silencing 1-like) is only known histone H3K79 methyltransferase. It is not clear whether the role and mechanism of Dot1L on cerebral ischemia is related to regulate neuron apoptosis. Methods and Results We use a combination of mice middle cerebral artery occlusion stroke and neurons exposed to oxygen-glucose deprivation followed by reoxygenation to investigate the role and mechanism of Dot1L on cerebral ischemia. We find knockdown or inhibition of Dot1L reversed ischemia-induced neuronal apoptosis and attenuated the neurons injury treated by oxygen-glucose deprivation followed by reoxygenation. Further, blockade of Dot1L prevents RIPK1 (receptor-interacting protein kinase 1)-dependent apoptosis through increased RIPK1 K63-ubiquitylation and decreased formation of RIPK1/Caspase 8 complexes. In line with this, H3K79me3 enrichment in the promoter region of deubiquitin-modifying enzyme A20 and deubiquitinase cylindromatosis gene promotes the increasing expression in oxygen-glucose deprivation followed by reoxygenation -induced neuronal cells, on the contrary, oxygen-glucose deprivation followed by reoxygenation decreases H3K79me3 level in the promoter region of ubiquitin-modifying enzyme cIAP1 (cellular inhibitors of apoptosis proteins), and both these factors ultimately cause K63-deubiquitination of RIPK1. Importantly, knockdown or inhibition of Dot1L in vivo attenuates apoptosis in middle cerebral artery occlusion mice and reduces the extent of middle cerebral artery occlusion -induced brain injury. Conclusions These data support for the first time, to our knowledge, that Dot1L regulating RIPK1 to the apoptotic death trigger contributes to cerebral ischemia injury. Therefore, targeting Dot1L serves as a new therapeutic strategy for ischemia stroke.


Assuntos
Apoptose , Isquemia Encefálica , Histona-Lisina N-Metiltransferase , Proteína Serina-Treonina Quinases de Interação com Receptores , Traumatismo por Reperfusão , Animais , Apoptose/fisiologia , Isquemia Encefálica/patologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Traumatismo por Reperfusão/patologia
10.
Clin Transl Med ; 11(11): e591, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34841684

RESUMO

BACKGROUND: The methylation of lysine residues has been involved in the multiple biological and diseases processes. Recently, some particular non-histone proteins have been elucidated to be methylated by SMYD2, a SET and MYND domain protein with lysine methyltransferase activity. METHODS: SMYD2 was evaluated in synovial tissue and cells derived from rheumatoid arthritis patients. We confirmed TRAF2 could be methylated by SMYD2 using Mass spectrometry, pull-down, immunoprecipitation, methyltransferase assay, ubiquitination assay, luciferase reporter assays, and western blot analyses. Using loss- and gain-of function studies, we explored the biological functions of SMYD2 in vitro and in vivo. Using acute and chronic inflammation with different mice models to determine the impact of SMYD2. RESULTS: Here, we first time confirmed that the cytoplasmic protein TRAF2 as the kernel node for NF-κB signaling pathway could be methylated by SMYD2. SMYD2-mediated TRAF2 methylation contributed to the durative sensitization of NF-κB signaling transduction through restraining its own proteolysis and enhancing the activity. In addition, we found knocking down of SMYD2 has different degrees of mitigation in acute and chronic inflammation mice models. Furthermore, as the lysine-specific demethylase, LSD1 could resist methylation on TRAF2 induced by SMYD2. CONCLUSIONS: Our data uncovered an unprecedented cytoplasmic protein network that employed methylation of TRAF2 for the maintenance of NF-κB activation during inflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/farmacologia , Inflamação/tratamento farmacológico , Metilação/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/uso terapêutico , Histona-Lisina N-Metiltransferase/uso terapêutico , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
11.
Biochem Biophys Res Commun ; 528(4): 671-677, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32513540

RESUMO

Myocardial fibrosis is the pathological consequence of injury-induced fibroblastto-myofibroblast transition, resulting in increased stiffness and diminished cardiac function. Histone modification has been shown to play an important role in the pathogenesis of cardiac fibrosis. Here, we identified H3K27me3 demethylase JMJD3/KDM6B promotes cardiac fibrosis via regulation of fibrogenic pathways. Using neonatal rat cardiac fibroblasts (NRCF), we show that the expression of endogenous JMJD3 is induced by angiotensin II (Ang II), while the principle extracellular matrix (ECM) such as fibronectin, CTGF, collagen I and III are increased. We find that JMJD3 inhibition markedly enhances the suppressive mark (H3K27me3) at the beta (ß)-catenin promoter in activated cardiac fibroblasts, and then substantially decreases expression of fibrogenic gene. Both inhibition of ß-catenin-mediated transcription with ICG-001 and genetic loss of ß-catenin can prevent Ang II-induced ECM deposition. Most importantly, in vivo inhibition of JMJD3 rescues myocardial ischemia-induced cardiac fibrosis and cardiac dysfunction. Collectively, our findings are the first to report a novel role of histone demethylase JMJD3 in the pro-fibrotic cardiac fibroblast phenotype, pharmacological targeting of JMJD3 might represent a promising therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Angiotensina II/metabolismo , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Coração/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo
12.
FASEB J ; 34(3): 4107-4119, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971317

RESUMO

The intracellular NOD-like receptor nucleotide-binding domain-like receptors Family Pyrin Domain Containing 3 (NLRP3) is a pivotal regulator of intestinal homeostasis through regulating a variety of inflammatory and autoimmune diseases. The Jumonji domain-containing 3 (Jmjd3) plays important role in inflammatory responses and thus has been proposed as a novel attractive epigenetic target for the treatment of inflammatory diseases. We here investigated whether targeting Jmjd3 regulates NLRP3 inflammasome during experimental colitis. Jmjd3 specific inhibitor GSK J4 or knocking down Jmjd3 significantly inhibited NLRP3 inflammasome activation in lipopolysaccharide (LPS) and nigericin-stimulated bone marrow-derived macrophages. Chromatin immunoprecipitation-PCR analysis validated that GSK J4 rescued the decreased repressive H3K27me3 recruitment level on the promotors of nuclear factor-erythroid 2-related factor 2 (Nrf2) in LPS plus nigericin-induced macrophages. Nrf2 knockdown abolished NLRP3 inflammasome activation. Notably, oral administration of GSK J4 attenuated the disease progression in dextran sodium sulfate-induced colitis mouse model, including reduced disease activity index, improved body weight, rescued bowel shortening and NLRP3 inflammasome activation. Overall, our study reveals that Jmjd3 is a potential epigenetic regulator for the treatment of inflammatory bowel disease (IBD), suggesting that Nrf2 is a potential target gene of Jmjd3 by mediating methylation status of trimethylated H3 lysine 27 (H3K27me3) in the promotor and is required for NLRP3 inflammasome activation, thereby providing the platform for potential future therapeutic interventions in IBD.


Assuntos
Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Inflamassomos/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunoprecipitação da Cromatina , Colite/imunologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imuno-Histoquímica , Inflamassomos/imunologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Regiões Promotoras Genéticas/genética , Células RAW 264.7 , RNA Interferente Pequeno/genética , Distribuição Aleatória
13.
Drug Des Devel Ther ; 13: 4145-4157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849446

RESUMO

BACKGROUND: The role of catalpol in brain neurogenesis and newborn neuron survival has not been previously determined in permanent middle cerebral artery occlusion (pMCAO). METHODS: Fifty-four rats were divided into 6 groups: pMCAO (model, n=9); sham operation (NS, n=9); catalpol treatment (5 mg/kg and 10 mg/kg subgroups, n=9 each); K252a (n=9); and K252a+catalpol 5 mg/kg (n=9) with stroke. The effects of catalpol on behavior, neurogenesis surrounding the infarction ipsilateral to pMCAO, and the expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) were evaluated. Vehicle or, K252a (i.p.), an inhibitor of TrkB phosphorylase. RESULTS: Repeated administration of catalpol reduced neurological deficits and significantly improved neurogenesis. Catalpol increased the number of newborn immature neurons, as determined by BrdU+-Nestin+ and BrdU+-Tuj-1+ staining, and downregulated cleaved caspase 3 in Tuj-1+ cells at day 7 following stroke. Moreover, catalpol increased the protein expression of Tuj-1, MAP2, and the Bcl-2/Bax ratio, as determined using Western blot. Catalpol also significantly increased brain levels of BDNF, but not TrkB, resulting in enhanced survival of newborn neurons via inhibition of apoptosis. CONCLUSION: Catalpol may contribute to neurogenesis in infarcted brain regions and help promote the survival of newborn neurons by activating BDNF, but not BDNF/TrkB signaling.


Assuntos
Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glucosídeos Iridoides/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Glucosídeos Iridoides/administração & dosagem , Masculino , Estrutura Molecular , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
14.
Ann Transl Med ; 7(14): 306, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31475176

RESUMO

BACKGROUND: MicroRNA-124 (miR-124) is a brain-specific miRNA molecule, the highest expression in the cortex and is associated with neuronal protection after stroke. This study aimed to investigate whether catalpol could affect miR-124 to regulate PI3K/AKT/mTOR pathway, promoting axonal growth in stroke rats. METHODS: Cells were divided into three groups: control group, miRNA124 agomir group, and miRNA124 antagomir group. To explore the mechanism, cells were divided into seven groups: control group, OGD group (OGD/R), miRNA124 agomir group, miRNA124 agomir plus catalpol group, miRNA124 antagomir group, miRNA124 antagomir plus catalpol group, and catalpol group. Before OGD/R, miRNA124 antagomir and microRNA124 agomir were transfected into neurons for 6 h by using ribo FECT nd Consumablesn/reper transfection kit. Cell survival and cell death were detected by MTT and LDH assay. Axonal growth was assessed by MAP-2 immunofluorescence staining. Western blotting and qPCR were used to detect the expression of molecules in the PI3K/AKT/mTOR pathway. RESULTS: Inhibition of miR-124 activated PI3K/AKT/mTOR pathway and promoted neuronal survival and axonal growth. The expression of miR-124 increased after OGD/R, and catalpol could inhibit miR-124 to activate PI3K/AKT/mTOR pathway to further promote axonal growth. CONCLUSIONS: It is concluded that catalpol may inhibit miR-124 to activate PI3K/AKT/mTOR pathway, promoting axonal growth.

15.
Ann Transl Med ; 7(23): 756, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32042772

RESUMO

BACKGROUND: To investigate the role and mechanism of catalpol on neuronal cell activity to promote axonal regeneration via PI3K/AKT/mTOR pathway after stroke. METHODS: In vivo the effect of catalpol (2.5, 5, 7.5 mg/kg; i.p) or vehicle administered 24 h after stroke and then daily for 7 days on behavior, Map-2+/p-S6+ and Map-2+/GAP-43+ immunofluorescence were assessed in a rat model of stroke. Then in vitro, an oxygen-glucose deprivation (OGD/R) model was established to observe the effect of catalpol (0.1, 1, 10 and 100 µg·mL-1) on cultural neurons survive rate, neuronal cell activity and axon growth. Moreover, rapamycin (Rapa) was used to inhibit the mTOR pathway to observe the catalpol mechanism on neuronal cell activity to promote axonal growth, and the proteins related with PI3K/AKT/mTOR pathway were detected by Western blot assay. RESULTS: Repeated treatments with catalpol improved neurological score and significantly enhanced neuronal cell activity, then promote axonal regeneration after stroke. While in vitro, catalpol also increased the survive rate and axonal growth of the neurons. Catalpol can reversed the Rapa inhibited effects on neurons' survive and axon extending. Catalpol can also reversed proteins reduced by Rapa related with PI3K/AKT/mTOR pathway. CONCLUSIONS: These results suggested that catalpol might contribute to internal neuronal cell activity and axonal regeneration by regulating PI3K/AKT/mTOR pathway.

16.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719894

RESUMO

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Assuntos
Coloração Cromossômica/métodos , Cromossomos de Mamíferos/genética , Cricetulus/genética , Cariótipo , Filogenia , Animais , Haplótipos/genética
17.
Chin Med ; 11: 25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27175212

RESUMO

BACKGROUND: Diabetes, associated with hyperlipidemia and oxidative stress, would lead to an increased production of reactive oxygen species. Rehmannia glutinosa (Di Huang) is widely used to nourish yin, invigorate the kidney (shen), and treat xiao ke (a diabetes-like syndrome in Chinese medicine). This study aims to investigate the antidiabetic and antioxidant effects of catalpol from R. glutinosa on rat diabetes induced by streptozotocin (STZ) and high-fat, high-sugar feed. METHODS: Rats (eight rats in each group at least) were induced diabetes by an initial high-fat high-sugar feed for 3 weeks, followed by an intraperitoneal injection of STZ (30 mg/kg) for 3 days, and rats were fasted overnight before treatments. Catalpol at a dose of 0, 5, 10, 20 or 50 mg/kg was administrated through bolus intravenous injection to the experimental rats to find the most effective anti-hyperglycemic dose of catalpol to further study body weight loss, water intake, and food intake. The most effective catalpol dose was given to the diabetic model rats with hyperlipidemia, and the levels of blood sugar, plasma total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) were measured after catalpol administration once a day for 2 weeks. An oral glucose challenge test (OGCT) was performed after above experiments in which the most effective dose of catalpol has been determined. Levels of glutathione peroxidase (GSH-PX), catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by corresponding reagent kits and morphological changes of the pancreas were observed with histopathological examination using H&E stain. RESULTS: Catalpol at a dose of 50 mg/kg ameliorated body weight loss and increased water and food intake. Catalpol also attenuated the increase of plasma TC (P = 0.0067) and TG (P = 0.0084) and increased HDL-C (P = 0.0336). The OGCT revealed that catalpol reduced the increase of plasma glucose. The activities of antioxidative enzymes (SOD, P = 0.0037; GSH-PX, P = 0.0066; CAT, P = 0.005) were enhanced and MDA was reduced (P = 0.003). Furthermore, catalpol reduced the morphological impairment of the pancreas. CONCLUSION: Catalpol protected against STZ-induced diabetes with high-fat and high-sugar feed with ameliorated structural impairment of the pancreas and restored balance between oxidative enzymes and antioxidative enzymes.

18.
PLoS One ; 10(11): e0143669, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606532

RESUMO

In this study, we investigated the suitability of ultrathin and porous polyimide (PI) membrane as a carrier for subretinal transplantation of human embryonic stem cell (hESC) -derived retinal pigment epithelial (RPE) cells in rabbits. The in vivo effects of hESC-RPE cells were analyzed by subretinal suspension injection into Royal College of Surgeons (RCS) rats. Rat eyes were analyzed with electroretinography (ERG) and histology. After analyzing the surface and permeability properties of PI, subretinal PI membrane transplantations with and without hESC-RPE were performed in rabbits. The rabbits were followed for three months and eyes analyzed with fundus photography, ERG, optical coherence tomography (OCT), and histology. Animals were immunosuppressed with cyclosporine the entire follow-up time. In dystrophic RCS rats, ERG and outer nuclear layer (ONL) thickness showed some rescue after hESC-RPE injection. Cells positive for human antigen were found in clusters under the retina 41 days post-injection but not anymore after 105 days. In rabbits, OCT showed good placement of the PI. However, there was loss of pigmentation on the hESC-RPE-PI over time. In the eyes with PI alone, no obvious signs of inflammation or retinal atrophy were observed. In the presence of hESC-RPE, mononuclear cell infiltration and retinal atrophy were observed around the membranes. The porous ultrathin PI membrane was well-tolerated in the subretinal space and is a promising scaffold for RPE transplantation. However, the rejection of the transplanted cells seems to be a major problem and the given immunosuppression was insufficient for reduction of xenograft induced inflammation.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/transplante , Células-Tronco Embrionárias Humanas/citologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Tecidos Suporte , Animais , Linhagem Celular , Modelos Animais de Doenças , Eletrorretinografia , Humanos , Ratos , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Tomografia de Coerência Óptica , Resultado do Tratamento
19.
BMC Evol Biol ; 15: 205, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26409465

RESUMO

BACKGROUND: Previous cross-species painting studies with probes from chicken (Gallus gallus) chromosomes 1-10 and a paint pool of nineteen microchromosomes have revealed that the drastic karyotypic reorganization in Accipitridae is due to extensive synteny disruptions and associations. However, the number of synteny association events and identities of microchromosomes involved in such synteny associations remain undefined, due to the lack of paint probes derived from individual chicken microchromosomes. Moreover, no genome-wide homology map between Accipitridae species and other avian species with atypical karyotype organization has been reported till now, and the karyotype evolution within Accipitriformes remains unclear. RESULTS: To delineate the synteny-conserved segments in Accipitridae, a set of painting probes for the griffon vulture, Gyps fulvus (2n = 66) was generated from flow-sorted chromosomes. Together with previous generated probes from the stone curlew, Burhinus oedicnemus (2n = 42), a Charadriiformes species with atypical karyotype organization, we conducted multidirectional chromosome painting, including reciprocal chromosome painting between B. oedicnemus and G. fulvus and cross-species chromosome painting between B. oedicnemus and two accipitrid species (the Himalayan griffon, G. himalayensis 2n = 66, and the common buzzard, Buteo buteo, 2n = 68). In doing so, genome-wide homology maps between B. oedicnemus and three Accipitridae species were established. From there, a cladistic analysis using chromosomal characters and mapping of chromosomal changes on a consensus molecular phylogeny were conducted in order to search for cytogenetic signatures for different lineages within Accipitriformes. CONCLUSION: Our study confirmed that the genomes of the diurnal birds of prey, especially the genomes of species in Accipitriformes excluding Cathartidae, have been extensively reshuffled when compared to other bird lineages. The chromosomal rearrangements involved include both fusions and fissions. Our chromosome painting data indicated that the Palearctic common buzzard (BBU) shared several common chromosomal rearrangements with some Old World vultures, and was found to be more closely related to other Accipitridae than to Neotropical buteonine raptors from the karyotypic perspective. Using both a chromosome-based cladistic analysis as well as by mapping of chromosomal differences onto a molecular-based phylogenetic tree, we revealed a number of potential cytogenetic signatures that support the clade of Pandionidae (PHA) + Accipitridae. In addition, our cladistic analysis using chromosomal characters appears to support the placement of osprey (PHA) in Accipitridae.


Assuntos
Evolução Biológica , Coloração Cromossômica , Falconiformes/genética , Animais , Galinhas/genética , Cromossomos , Falconiformes/classificação , Genoma , Cariótipo , Filogenia , Sintenia
20.
Bioorg Med Chem Lett ; 24(6): 1479-83, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24565904

RESUMO

A series of novel benzo[b][1,4]oxazin-3(4H)-one derivatives were synthesized as platelet aggregation inhibitors for structure-activity relationships (SAR) analysis. The synthetic pattern, involved Smiles rearrangement for the preparation of benzoxazine, was proven to be more efficient than the conventional methods. Biological evaluation demonstrated that among all the synthesized compounds, compound 9u (IC50=9.20µM) exhibited the most potent inhibition activity compared with aspirin, the positive control (IC50=7.07µM). Molecular docking revealed that these set of compounds could be the GPIIb/IIIa antagonist for that they could be situated in the binding site of GPIIb/IIIa receptor quite well.


Assuntos
Benzoxazinas/química , Piperazinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Benzoxazinas/síntese química , Benzoxazinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Simulação de Acoplamento Molecular , Piperazinas/química , Piperazinas/metabolismo , Inibidores da Agregação Plaquetária/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...